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The BP· complexity class operator is defined as follows; L ∈ BP · C if there is a language LV ∈ C
(“V ” for “verifier”) and a polynomial p such that for all strings x,

x ∈ L ⇒ Prr∈{0,1}p(n) [(x, r) ∈ LV ] ≥ 3/4

x /∈ L ⇒ Prr∈{0,1}p(n) [(x, r) ∈ LV ] ≤ 1/4

Reading before class on Thursday Nov 9

• Köbler, Schöning, and Torán pp. 68–71 on probability amplification.

In-Class Exercises Tuesday

1. Define BPP = BP · P.

(a) Show that co · BP · C = BP · coC for any class C. (Recall: Lc = {x ∈ Σ∗ : x /∈ L} and
co · C = {L : Lc ∈ C}.)

(b) Use the preceding to conclude that BPP is closed under complement, that is, BPP =
coBPP.

2. We say that a decision problem A is (polynomial-time) majority reducible to a decision prob-
lem B, denoted A ≤p

maj B, if there is a polynomial-time function r ∈ FP such that, for each
input x, r(x) outputs a tuple of strings, r(x) = (y1, . . . , ypoly(|x|)), and for all strings x,

x ∈ A ⇐⇒ More than half of the yi are in B.

A class C is closed under majority reductions if B ∈ C and A ≤p
maj B implies A ∈ C.

(a) Show that P is closed under majority reductions.

(b) Show that NP is closed under majority reductions.

In-Class Exercises Thursday

3. Show that if C is a class that is closed under majority reductions, then BP · BP · C = BP · C.

4. (a) (This one is important! Gets used all over the place.) Show that if C is closed under
majority reductions, then ∃ · BP · C ⊆ BP · ∃ · C.
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(b) We define the classes MA = ∃ · BPP and AM = BP · NP. Show that MA ⊆ AM.

(c) Show that NP ∪ BPP ⊆ MA.

(d) Using complexity class operators and previous parts, show that if C is closed under
majority reductions, then ∀ · BP · C ⊆ BP · ∀ · C. (That is: don’t re-do a similar proof to
part (a), instead use part (a) directly and some things you know about complexity class
operators to prove this result.)

5. Define the “Arthur–Merlin hierarchy” by extending the above, e.g.

AMA = BP ·MA

MAM = ∃ · AM,

and similarly for more letters. That is, define

AM[k] = BP ·MA[k − 1]

MA[k] = ∃ · AM[k − 1],

with AM[1] = AM and MA[1] = MA.

Show that this hierarchy collapses: for all constant k (independent of input size), AM[k] ∪
MA[k] ⊆ AM. (Food for thought: what happens if we allow a number of alternations between
strong majority and ∃ quantifiers that depends on the input size? The answer may surprise
you!)

Next week’s exercises

6. (a) Show that AM ⊆ Π2P.

(b) Show that MA ⊆ Σ2P ∩ Π2P. (Note how much stronger this is than merely BPP ⊆
Σ2P ∩ Π2P!)

7. (a) Show that if NP ⊆ BPP, then PH = BPP. Hint: Use induction, Exercise 4(a), and
Exercise 3 to show that NP ⊆ BPP ⇒ PH ⊆ BPP.

(b) Show that if NP ⊆ coAM, then PH = AM. Hint: Similar to previous part, playing
around with complexity class operators to show that NP ⊆ coAM ⇒ PH ⊆ coAM.

8. Prove that if Graph Isomorphism is NP-complete, then PH collapses to the second level.

Optional Homework Exercises (Side Quest): BPP and oracles

9. (a) Show that BPP is closed under ≤p
T reductions, that is, that PBPP = BPP.

(b) Show that BPP is self-low, that is, BPPBPP = BPP.

10. Show that for all classes C, we have BP · C ⊆ BPPC .

11. Show that NPX is closed under majority reductions for any oracle X. Use the oracle char-
acterization of PH to show immediately that ΣkP (for all k) and PH are all closed under
majority reductions.

12. (a) If L is in BPP, and p is a polynomial, show that L′ = {(1n, x1, . . . , xp(n)) : xi ∈ L for all i}
is also in BPP.
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(b) Show that NPBPP = NPBPP[1], where the latter means NP with a BPP oracle, but it only
queries the oracle once. Hint: Use nondeterminism to guess the oracle answers, and use
the one query at the end to verify all the guesses at once, using part (a).

(c) Show that NPBPP ⊆ BPPNP. Hint: With the previous part of this exercise, this part
becomes closely related to Exercise 4.

(d) Use the previous part and the oracle characterization of PH to give an alternative proof
that if NP ⊆ BPP then PH ⊆ BPP.

Resources

• Our approach to this material is closest to that in Chapter 2 of Köbler, Schöning, and Torán.

• Arora & Barak Section 8.4.3 covers the result about NP-completeness of GI implying collapse
of PH. The rest of their Chapter 8 covers interactive proofs more generally. (Note: they have
an exercise to show that AM ⊆ Σ3P, but in fact we will see it is contained in Σ2P.)

• The result about GI is also covered in Homer & Selman Section 10.5. The rest of Chapter 10
covers probabilistic classes such as BPP (and friends); their Section 12.3 covers Arthur–Merlin
games, while the rest of their Chapter 12 covers more general interactive proofs.

• Zachos, S. Probabilistic quantifiers and games, J. Comput. Syst. Sci. 36(3):433–451, 1988.
doi:10.1016/0022-0000(88)90037-2

• Warning! There is another class called “∃BPP”, but it is not the same as ∃·BPP = MA. See
the Complexity Zoo entry for the difference (it has to do with how the randomized machines
behave on all witnesses vs how they behave only on the one accepted witness).
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